Room: Auditorium B
Sunday, 10:30
Duration: 25 minutes (plus Q&A)
The following lighting talks are presented in this session of the academic track:
The quality of OSM data is dependent on many different factors and is quite heterogeneous. Therefore, in both intrinsic and extrinsic quality parameter analyses, a common practice is subdividing the study areas into subareas. In this paper, we worked on a method for obtaining the optimal grid cell size for OSM data quality analysis. Furthermore, we proposed that if the quality is homogeneous in a region, it can be estimated using an IDW interpolation. . In this summary, we have done a preliminary analysis for a Brazilian city, Curitiba, with about 28,000 points of known accuracy.
Albeit the manifold usage of OSM building footprints an adequate investigation into their completeness on the global scale has not been conducted so far. This talk investigates OSM building completeness within all 13,135 urban centers covering about 50% of the global population.
This pilot project is connected to a larger initiative to open-source the assisted mapping platform for Humanitarian OpenStreetMap (HOTOSM) based on Very High Resolution (VHR) drone imagery. The study test and evaluate multiple U-Net based architectures on building segmentation of Refugee Camps in East Africa.
Using intrinsic quality indicators we explore how network quality, in terms of its suitability for navigation, varies across areas with relatively high and low corporate editing in OpenSteetMap. Our work shows areas with relatively high rates of corporate editing exhibit not only an overall increase in data quality, but also increased rates at which quality improves.
The fitness of OSM for multi-label classification is proven. A workflow to enhance OSM-based multi-labels using machine learning is established. The results are provided to the OSM community via the HOT Tasking Manager.