Increasing OpenStreetMap Data Accessibility with the Analysis-Ready Daylight OSM Distribution: **Demonstration of Cloud-Based Assessment** of Global Building Completeness

Jennings Anderson and Timmera Whaley Omidire

01 Daylight

What is Daylight?

Daylight is made of OpenStreetMap Data

Validated by the mobius team to be accurate, recent, and vandalism-free

Daylight is a distribution of OpenStreetMap Data published with additional datasets such as microsoft buildings and experimental ML roads.

Daylight Process: Find-Fix-Import Loop

Find: Discover errors or other issues anywhere on the map

Fix: Submit fixes on live OSM, not in an internal database

Import: Apply fixes from OSM into the Daylight map

OSM Relations Example

Quality issue Geometric roof of Tabung Haji Putrajaya not rendering on map

Quality fix Dissolved parts of relation and added roof tags to each individual way Changeset 123292182

Timeline of Daylight OpenStreetMap Distribution

Daylight v1.16

517 M

Buildings

78 M

Kilometers of roads / paths

100%

snapshot.

OpenStreetMap Data Think of Daylight as a snapshot of OSM where each feature might not be from the same

Repaired beach relation for Padang Bai Beach in Bali, Indonesia

A Generalized OpenStreetMap Data Analysis Pipeline

- OSM Planet PBF
- Overpass
- OSM Galaxy / HOT Export Tool
- OSHDB
- GeoFabrik Extracts

First analysts obtain OSM data from any number of sources

A Generalized OpenStreetMap Data Analysis Pipeline

- OSM Planet PBF
- Overpass
- OSM Galaxy / HOT Export Tool
- OSHDB
- GeoFabrik Extracts

First analysts obtain OSM data from any number of sources It can be more efficient to pre-process the data depending on the format and use case.

osmium extract

- osmium tag filter

-

Osmium tag-filter, for example is extremely fast.

A Generalized OpenStreetMap Data Analysis Pipeline

- OSM Planet PBF
- Overpass
- OSM Galaxy / HOT Export Tool
- OSHDB
- GeoFabrik Extracts

First analysts obtain OSM data from any number of sources

- osmium extractosmium tag filter
- osm2pgsql
- ogr2ogr

It can be more efficient to pre-process the data depending on the format and use case.

Osmium tag-filter, for example is extremely fast.

At some point, nodes, ways, and relations need to be converted into Points, Lines, and Polygons and the OSM tags turned into columns or key/value pairs

A Generalized OpenStreetMap Data Analysis Pipeline

Analysis Ready OSM Pipeline

- OSM Galaxy / HO Export Tool
- OSHDB
- GeoFabrik Extracts

First analysts obtain OSM data from any number of sources It can be more efficient to pre-process the data depending on the format

Osmium tag-filter, for example is extremely fast Write a query, obtain data

R Studio

Now we're ready to explore our data

Monthly Daylight Distributions

Registry of Open Data on AWS

Standard OSM Attributes

Relation: Plesso Didattico Viale Morgagni (8128765)

X

Version #3

Additions and Fixes - Centro Didattico Morgagni

Edited about 4 years ago by ananonymousmapper Changeset #59101379

Tags

addr:city	Firenze
addr:housenumber	44-48
addr:postcode	50134
addr:street	Viale Giovan Battista Morgagni
building	university
building:levels	3
email	reception.morgagni4 4@polobiotec.unifi.it
name	Plesso Didattico Viale Morgagni
name_1	Centro Didattico Morgagni
phone	+39 055 275 1016
phone_1	+39 055 275 1015
type	multipolygon

Members

▼ 3 members Way 57728745 as outer Way 571092456 as inner Way 571092453 as inner

Download XML · View History

Standard OSM Attributes

Analysis-Ready Attributes

Analysis-Ready Daylight in Action

How many buildings are in Daylight OSM?

⊘ Query 1						
1	SELECT COUNT(*)					
2	FROM daylight_osm_features					
3	WHERE tags ['building'] ↔ 'no'					
4	AND release = 'v1.16'					

Ø∕Meta

How many buildings are in Daylight OSM?

How many buildings are in Daylight OSM?

⊘ Query 1							+		
1 SELECT COUNT(*) 2 FROM daylight_osm_features 3 WHERE tags ['building']									
SQL Ln 4, Col 24	tag <u>KEYS</u> TAGS	info RELATIONS	• PROJECTS	· REPORT	S · ABOUT				
Run again Explain [2] Cancel Save Query results Query stats	building To mark the ou	tline of a build	ing, a man-ma	ide structur	re with a roof, s	tanding m	ore or le	ess permane	ntly in one place
⊘ Completed	Overview	Values C	Combinations	Similar	Chronology	Мар	Wiki	Projects	Characters
Results (1)	Overview								
Q. Search rows	Туре		Number of obje	ects	Numbe	r of values			
	* All	523 970 91	6 6.00% ■			7 978			
# ▽ _col0	 Node 	1 1 2 5 1 4	12 0.57%			1 122			
1 517664923	💽 Way	52194060	3 59.38%			7 197			
	Relation	905 17	71 8.94% ■			755			

Objects with this key were last edited by 710432 different users.

Global Building Counts

SELECT BING_TILE_POLYGON(
 BING_TILE(
 SUBSTR(
 quadkey,1,7
))),
 COUNT(*)
FROM daylight_osm_features
WHERE release = 'v1.13'
AND tags ['building'] <> 'no'
GROUP BY SUBSTR(quadkey,1,7)

quadkey = 120223131311311


```
quadkey = 120223131311311
```


quadkey = 1202231

Global Building Counts

SELECT BING_TILE_POLYGON(
 BING_TILE(
 SUBSTR(
 quadkey,1,7
))),
 COUNT(*)
FROM daylight_osm_features
WHERE release = 'v1.13'
AND tags ['building'] <> 'no'
GROUP BY SUBSTR(quadkey,1,7)

SELECT BING_TILE_POLYGON(
 BING_TILE(
 SUBSTR(
 quadkey,1,7
))),
 COUNT(*)
FROM daylight_osm_features
WHERE release = 'v1.13'
AND tags ['building'] <> 'no'
GROUP BY SUBSTR(quadkey,1,7)


```
SELECT tags [ 'highway' ] AS
highway_tag,
    SUM(linear_meters) /
1000 as total_km
FROM daylight_osm_features
WHERE release = 'v1.16'
    AND tags [ 'highway' ]
        IS NOT NULL
    AND linear_meters > 0
    AND ST_CONTAINS( <PR>
    ST_GEOMETRYFROMTEXT(wkt)
    )
GROUP BY tags [ 'highway' ]
ORDER BY total_km DESC
```


ST_GEOMETRYFROMTEXT(

'POLYGON((-67.51 17.65,-67.44 18.78,-65.16 18.63,-65.06 17.99,-66.40 17.57,-67.51 17.65))')

What about using spatial boundaries?

```
SELECT tags [ 'highway' ] AS
highway_tag,
    SUM(linear_meters) /
1000 as total_km
FROM daylight_osm_features
WHERE release = 'v1.16'
    AND tags [ 'highway' ]
        IS NOT NULL
    AND linear_meters > 0
    AND ST_CONTAINS( <PR>
    ST_GEOMETRYFROMTEXT(wkt)
    )
GROUP BY tags [ 'highway' ]
ORDER BY total_km DESC
```

# ▽	highway_tag \bigtriangledown	total_km
1	residential	21907
2	track	5734
3	tertiary	5626
4	service	3558
5	secondary	1772
6	unclassified	1589
7	motorway	888
8	path	611
9	primary	541
10	trunk	395
11	footway	323
12	motorway_link	315
13	trunk_link	64
14	cycleway	34
15	primary_link	33
16	secondary_link	29
17	tertiary_link	28
18	construction	24

00 Meta

What about using spatial boundaries?

```
SELECT id,
    tags [ 'highway' ],
    linear_meters,
    wkt AS geometry
FROM daylight_osm_features
WHERE release = 'v1.16'
    AND tags [ 'highway' ]
        IS NOT NULL
    AND linear_meters > 0
    AND ST_CONTAINS( <PR>
    ST_GEOMETRYFROMTEXT(wkt)
    )
```

Puerto_rico_roads.csv

id ⊽	highway 🛛	meters \triangledown	geometry
22242081	residential	172	LINESTRING(-66.026714 18.375809,-6
22115107	residential	284	LINESTRING(-67.125756 18.087181,-6 18.0882486,-67.12494 18.0888079,-6
543251238	service	73	LINESTRING(-66.8028986 18.4519378,
717378341	residential	412	LINESTRING(-67.0995413 18.03515,-6 18.038776)
	id ▼ 22242081 22115107 543251238 717378341	id v highway v 22242081 residential 22115107 residential 543251238 service 717378341 residential	id v highway v meters v 22242081 residential 172 22115107 residential 284 543251238 service 73 717378341 residential 412

39mb, 166k rows

What about using spatial boundaries?

SELECT id, tags ['highway'], linear_meters, wkt AS geometry FROM daylight_osm_features WHERE release = 'v1.16'AND tags ['highway'] IS NOT NULL AND linear_meters > 0 AND ST_CONTAINS(<PR> ST_GEOMETRYFROMTEXT(wkt)

	id 🗢	highway 🛛	meters \bigtriangledown	geometry
	22242081	residential	172	LINESTRING(-66.026714 18.375809,-
	22115107	residential	284	LINESTRING(-67.125756 18.087181,- 18.0882486,-67.12494 18.0888079,-
	543251238	service	73	LINESTRING(-66.8028986 18.451937
	717378341	residential	412	LINESTRING(-67.0995413 18.03515,- 18.038776)

39mb, 166k rows

27

Incorporating other Datasets

OSM Changesets have been available on AWS via the Registry of Open Data since 2017

https://registry.opendata.aws/osm/

Incorporating other Datasets

	#	⊽	id	∇	tags	\bigtriangledown	created_at ▼	uid 🗢	min_l	it ⊽	max_lat ⊽	min_lon
OSM Changesets have been available on AWS via the Registry of Open Data since	1		12402736	50	{"changesets_count":"12","comment":"#hotosm-project-12825 #OSMBD #Bangladesh #BangladeshFloodResponse2022","created_by":"iD 2,20-29-"hashtags":"#hotosm-project- 12825;#OSMBD;#Bangladesh;#BangladeshFloodResponse2022","host":" tps://tasks.hotosm.org/projects/12825/map/","imagery_used":"Maxar Premium Imagery;.gpx data file","locale":"en","review_requested":"yes"}) "ht	2022-07-24 23:57:52.000	16536796	24.71	3899	24.7137115	91.8185726
2017 SELECT * FROM changesets WHERE tags['comment'] LIKE '%#hotosm%'	2	/	12402734	13	{"changesets_count":"598", "comment":"#hotosm-project-12825 #OSMB #Bangladesh #BangladeshFloodResponse2022", "created_by": "iD 2,20.&", "hashtags": "#hotosm-project- 12825;#OSMBD;#Bangladesh;#BangladeshFloodResponse2022", "host": tps://tasks.hotosm.org/projects/12825/map/", "imagery_used": "Maxar Premium Imagery: gpx data file", "locale": "en"}	iD "ht	2022-07-24 23:56:35.000	9215893	25.13	8742	25.1415300	92.1332617
	3		12402733	5	{"changesets_count":"15","comment"."#hotosm-project-12691 #OpenCitiesLAC #ourimpact #MMCSeoul2022 #MarshSeoul22","created_by"."iD 2.20.2","hashtags":"#hotosm-project- 12691;#OpenCitiesLAC;#ourimpact;#MMCSeoul2022;#MarshSeoul22"," st":"https://tasks.hotosm.org/projects/12691/map/","imagery_used":"N ar Premium Imagery","locale":"ko"}	ho 1ax	2022-07-24 23:56:11.000	16512513	15.10	5880	15.1025018	-91.6396594

https://registry.opendata.aws/osm/

Incorporating other Datasets

Join Analysis-Ready Daylight Distribution to OSM Changesets table from OpenStreetMap on AWS RODA.

SELECT COUNT(buildings)
FROM daylight_osm d
JOIN changesets c
ON d.changeset = c.id
WHERE c.tags['comment']
LIKE '%#hotosm%'

Buildings in OSM that were last edited in a changeset with #hotosm hashtag

Buildings per square kilometer

OpenStreetMap Building Density

Calculated the same way as before, but with smaller tiles.

Additionally, for each tile, we calculate the area and compute the actual density of buildings in terms of buildings per square kilometer — otherwise our data could not be compared between different latitudes.

Kepler.gl, Mapbox, OpenStreetMap Data

High Resolution Settlement Layer (HRSL)

High Resolution population data for much of the world.

Also available as an open dataset on the Registry of Open Data on AWS

Like Analysis-Ready Daylight OSM, you can easily load it directly into athena without having to download it.

Once in Athena, JOIN hrsl

••••

High Resolution Population Density Maps + Demographic Estimates by CIESIN and Meta

 aerial imagery
 demographics
 disaster response
 geospatial
 image processing
 machine learning
 population

 satellite imagery
 sustainability

Description

Population data for a selection of countries, allocated to 1 arcsecond blocks and provided in a combination of CSV and Cloud-optimized GeoTIFF files. This refines CIESIN's Gridded Population of the World using machine learning models on high-resolution worldwide Maxar satellite imagery. CIESIN population counts aggregated from worldwide census data are allocated to blocks where imagery appears to contain buildings.

Update Frequency

Quarterly
License
https://creativecommons.org/licenses/by/4.0/
Documentation
Project overview and instructions for use with AWS Athena
Managed By
Meta
See all datasets managed by Meta.
Contact
disastermaps@fb.com

OpenStreetmap Building Density Normalized by Population

- USA appears with much higher coverage overall
- Eastern Africa, Nepal, Philippines, are all not *as complete* with regards to building coverage
- Majority of Europe is still *very* complete

OSM Buildings per km²

OSM Buildings per km² per person

OSM building + coverage per person

*0*0 Meta

Summary

- Analysis-Ready Daylight Distribution of OSM enables scalable analysis of OSM data in the cloud
- Not the first global OSM building density vs population assessment, but the first to run in just a few minutes with a few dozen lines of code.
- Expanding the OSM Data Science Toolkit

03 Advantages and Current Limitations

Advantages

- Contains common geospatial features such as points, lines, and polygons
- Utilizes basic knowledge of SQL to conduct analysis quickly & cost-effectively
- Not locked into AWS due to Apache Parquet files

Current Limitations

- Not suitable for OSM history data
 - Exploration of OSM historical data better suited in Ohsome

Exploratory questions

- 1. What type of research and innovation will emerge from utilizing ARD-OSM in the future?
- 2. How can the OSM research community expand on distributing OSM data through cloud-based database technologies?
- 3. What are the advantages of creating a pre-computed complete history in this environment vs utilizing Ohsome for investigations?

Conclusion

- Lowering barriers to entry for other researchers to increase data accessibility
- Reduce the heavy lift of data engineering
- Provide common geospatial vector formats used in GIS

• ARD-OSM is not a one size fits all tool (ex: Ohsome)

• No longer have to download and process the entire planet file

• Geospatial data backbone for others to build tools on

Thank you.

daylightmap.org

registry.opendata.aws/daylight-osm