
Combining Volunteered Geographic Information and WPdx standards to Improve Mapping of Rural Water Infrastructure in Uganda

SOTM 2022, Firenze Florence Italy

STELLAMARIS N.

Uganda Water Infrastructure Mapping Project

A collaboration between:

With funding from:

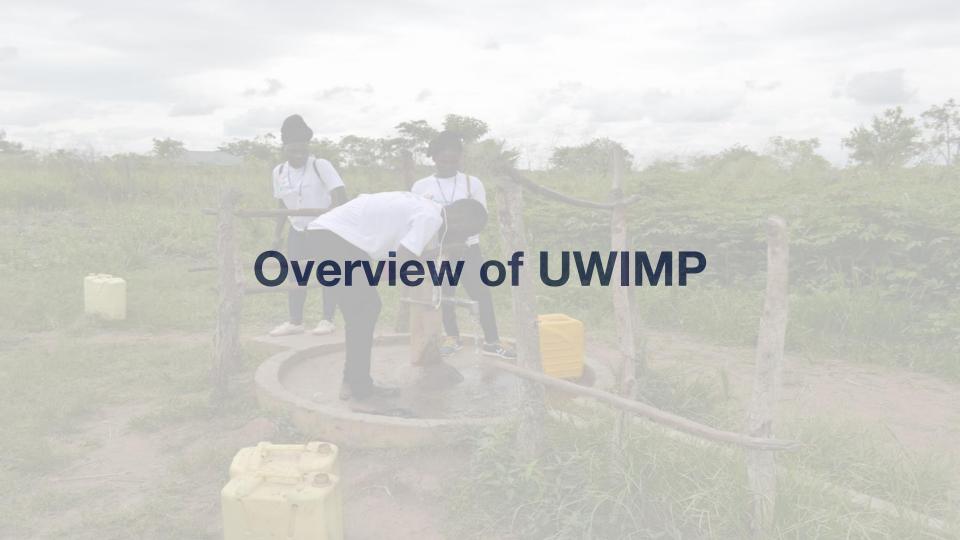
YouthMappers Project Team

Courtney Clark
Project Manager
YouthMappers Everywhere She
Maps Program Director
cclark@americangeo.org

Dr. Brent McCusker
Science Coordinator
Professor of Geography and
Department Chair,
West Virginia University
brent.mccusker@mail.wvu.edu

Stellamaris Nakacwa Project Coordinator Master's Candidate, West Virginia University sn00013@mix.wvu.edu

Partner and Consultant Team


Dr. Denis Nono
Water Infrastructure and
WASH Consultant
Lecturer, Gulu University
Faculty of Agriculture and
Environment
d.nono@gu.ac.ug

Dr. Geoffrey Openy
Operations and
Partnership Consultant
Lecturer, Gulu University
Faculty of Agriculture and
Environment
g.openy@gu.ac.ug

Katy Sill
Director, Water Point Data
Exchange (WPdx)
Program Director,
Global Water Challenge
katy.sill@getf.org

What is the Water Point Data Exchange?

WPdx is a platform designed to unlock the potential of water point data to explore challenges around sustainability and support evidence-based decision-making to improve water services.

Share

Access

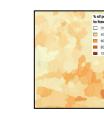
Use

Making Decisions with Data

Develop National Water Budget Identify
Allocations to
Each District

How much need is in each district?

Develop District Plan


How can we optimize limited resources available to ensure water services for the greatest number of people?

Identify Most Cost-Effective Investments

Which rehabilitations and new constructions can reach the greatest number of people? How many of each should be done?

Identify High Risk Water Points

Where can preventative maintenance be most effective?

System	Cost P/P
Rehab 1	4.35
Rehab 2	4.38
New Construction 1	5.12
Rehab 3	5.59
New Construction 2	6.12

UWIMP Outcomes

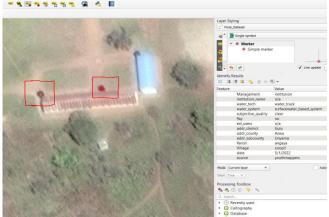
1

Increased access
to water point
data and decision
support tools, and
building of local
capacity, for
district
government
officials and
NGOs.

2

Development of leadership, teamwork, communications, and technical mapping skills among university students.

3


A proof of concept to launch discussions and planning for scale to additional districts, regions, and countries.

UWIMP Outcomes

4

A data set to develop an Al solution to detecting water points in satellite imagery.

UWIMP Methods

The Process

A) Data Model Design

WPdx Data Standard Parameters

Required

- Location (Latitude, Longitude)
- At least one:
 - Water Source
 - Water Point Technology
- Presence of Water when Assessed
- Date of Data Inventory
- Data Source

The WPdx Standard is designed for publicly available small water schemes and individual water points (wells, springs, etc.)

OSM meta data Overview

```
    Location

    Status

    Source

Amenity_type

    Name of Amenity

    Others
```

({{bbox}});

node

out:

```
Tags 11
                              addr:county = Kilak
                              addr:parish = Pogo
                              addr:subcounty = Pabbo
                              addr:village = Okuture
                               amenity = water point
                               elevation = 1055
                              name = bore hole
                              source = www.ubos.org
                              source:date = 2010..2014
                              status = Functional
                              Coordinates:
                              3.1678549 / 32.0416394 (lat/lon)
[amenity=water point]
```

The Process

B) Participant Training (YM)

This activity was conducted within 14 days addressing;

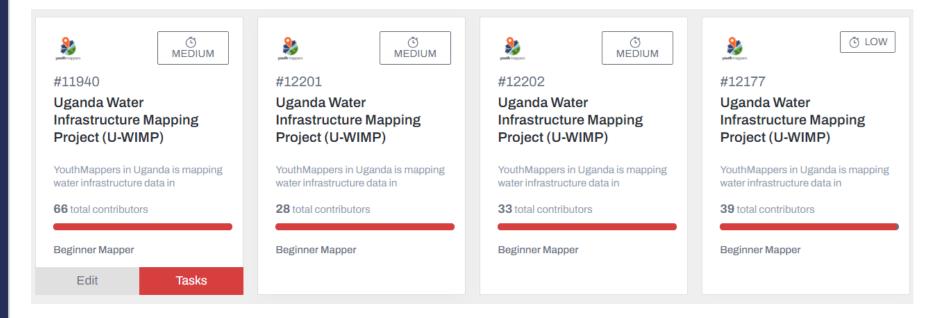
- Understanding of the OpenStreetMap ecosystem including both remote and field mapping tools.
- Understanding of WASH

YouthMappers in Uganda

12 Chapters

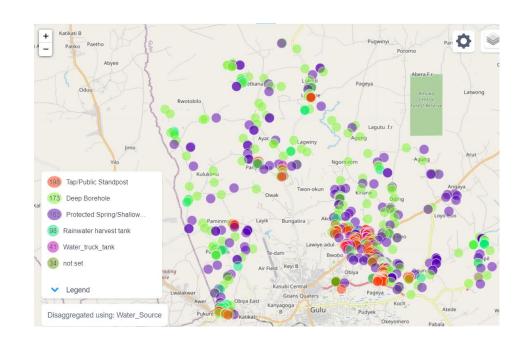
- Gulu University
- Busitema University
- Uganda Christian University, Mbale University
 College
- Makerere University
- Kumi University
- Uganda Pentecostal University
- Mbarara University of Science and Technology
- St. Augustine International University
- Kyambogo University
- Institute of Survey and Land Management
- Kabale University
- Muni University

Gulu University YouthMappers Chapter


- Founded in 2017
- Currently has > 90 members
- 30 university student members participated in UWIMP

The Process

C) Remote Data Campaign


A total of 6 tasks were set up and up to 15000 buildings and 14km² of roads were mapped.

The Process

D) Field Data Collection

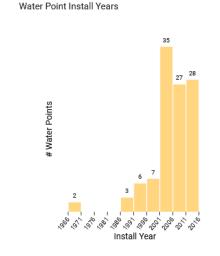
- The data collection exercise took 10 days and a total of 663 points were collected on different water sources.
- The field exercise covered Bungantira & Unyama sub counties.

Before UWIMP

Bungatira – WPdx+ Baseline Summary

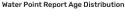
Bungatira

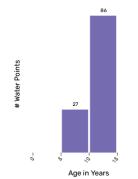
104 water points (94 functional)

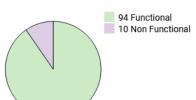

Total Population: 36,456 ppl

Rural Population: 35,055 ppl, of which

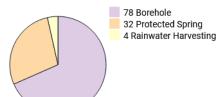
Served: 27,426 ppl (78.24%)

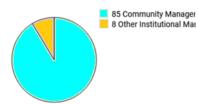

Unserved: 3,594 ppl (10.25%)


Unknown: 4,036 ppl (11.51%)



Rural Pop. Data Coverage: 88.5%





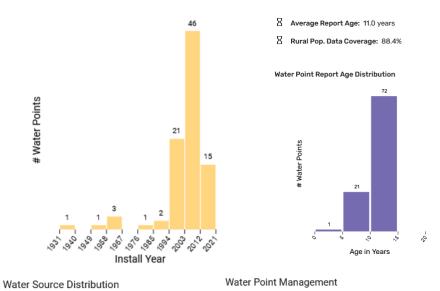
Water Source Distribution

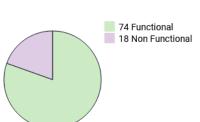
Water Point Management

Unyama – WPdx+ Baseline

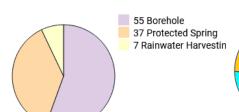
Unyama

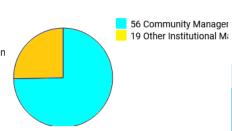
92 water points (74 functional)


Total Population: 18,025 ppl


Rural Population: 18,025 ppl, of which

Served: 14,919 ppl (82,77%)


Unserved: 1,023 ppl (5.68%)


Unknown: 2,083 ppl (11.56%)

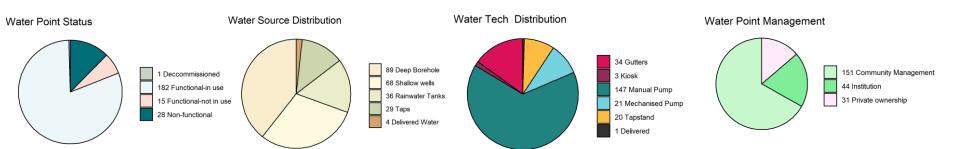
Water Point Status

After UWIMP

Bungatira – After YM Data Collection

Bungatira

320 water points (277 functional)


Total Population: 36,456 ppl

Rural Population: 35,055 ppl, of which

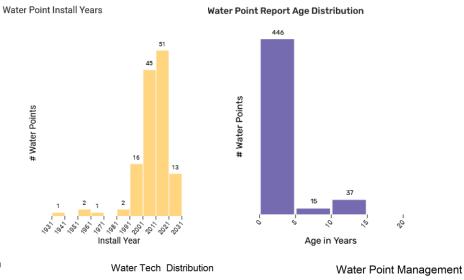
with Basic Access: 31,975 ppl (91.21%)

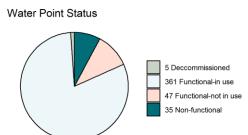
without Basic Access: 2,213 ppl (6.31%)

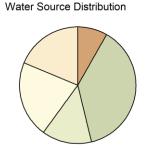
Uncharted areas: 868 ppl (2.47%)

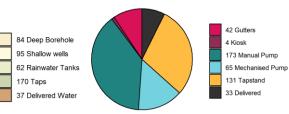
Unyama – After YM Data Collection

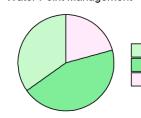
494 water points (439 functional)

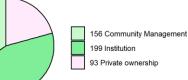

Total Population: 18,025 ppl

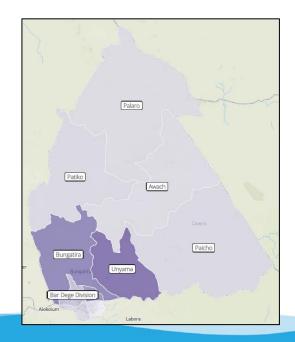

Rural Population: 18,025 ppl, of which


with Basic Access: 16,885 ppl (93.68%)


without Basic Access: 78 ppl (0.43%)

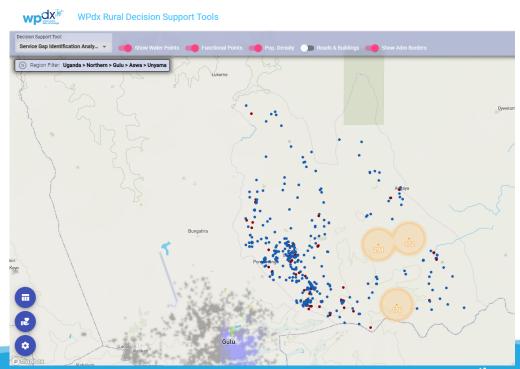

Uncharted areas: 1,062 ppl (5.89%)





UWIMP | WPdx Application

Improved data availability and quality

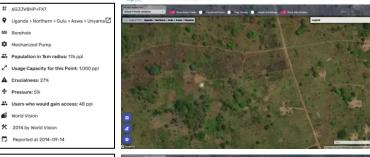

 U-WIMP project provided representative and up-to-data in two sub-counties in Gulu District

Unyama – Service Gap/New Construction

- Orange circles show recommended locations to consider new services
- Figures inside circles represent number of people who live within 1km of that point who could gain access to a new service

Unyama – Rehab Priority

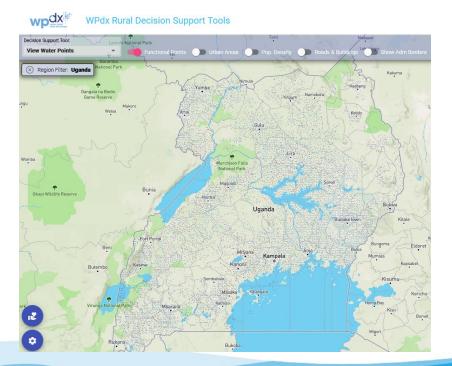
- See map of all non-functional points
- View table of top 15 points recommended for rehab or repair
- Click to see each point (next slide)
- Download full table in Excel for further analysis




#	Functional?	Source	Tech	Local Pop.	Water Point Pop. ▼	Crucialness	Pressure
1	No	Protected Spring	Unknown	88	82	93.2%	27.3%
2	Unknown	Borehole	Mechanized Pump	176	48	27.3%	4.8%
3	No	Borehole	Unknown	172	26	15.1%	5.2%
4	No	Borehole	Hand Pump	67	25	37.3%	6.3%
5	No	Borehole	Unknown	171	22	12.9%	4.4%
6	Unknown	Borehole	Mechanized Pump	180	18	10%	1.8%
7	No	Rainwater Harvesting	Unknown	171	17	9.9%	17%
8	No	Undefined Spring	Hand Pump	167	14	8.4%	3.5%
9	No	Undefined Spring	Hand Pump	167	14	8.4%	3.5%
10	No	Undefined Spring	Hand Pump	167	14	8.4%	3.5%
11	No	Borehole	Hand Pump	103	8	7.8%	2%
12	No	Protected Spring	Unknown	67	6	9%	2%
13	No	Rainwater Harvesting	Unknown	58	3	5.2%	3%
14	No	Protected Spring	Unknown	43	3	7%	1%
15	No	Rainwater Harvesting	Unknown	58	3	5.2%	3%

Unyama – Rehab Priority

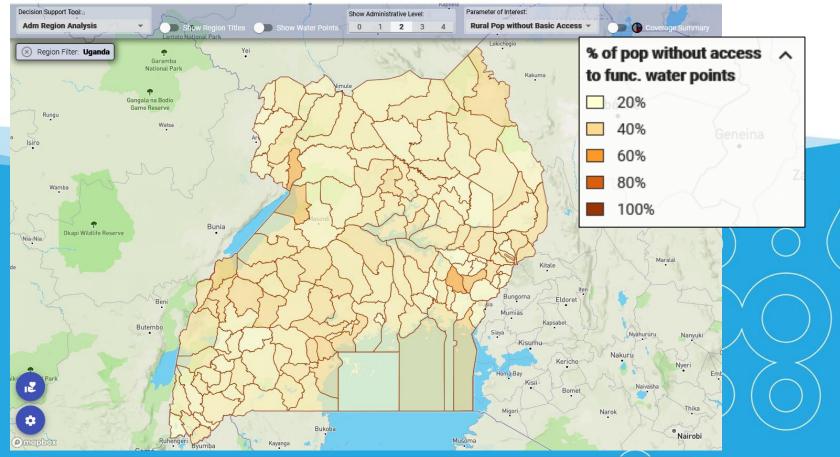
- Zoom to and review information about top points recommended for rehab or repair
- See satellite view of points and surrounding communities



Thank you!

Project Background:

Uganda data in WPdx



A total of 94,050 water point records

- 77,372 of which are functional
- Estimated 63% of rural population live within 1km of a functional water point*

Contributions from 23 organizations from 2005 - 2022

