

State of the Map 2022 Florence, Italy

Automated derivation of public urban green spaces via activity-related barriers using OpenStreetMap. Theodor Rieche

© Theodor Rieche

About

Theodor Rieche

- cartographer & spatial scientist
- research associate at IOER, research area "Spatial Information and Modelling" (since December 2021)
- currently working in project GOAT 3.0 (Geo Open Accessibility Tool)
- interests: Open Source&Open Data, OSM, Spatial AI, Citizen Science ...

Master thesis

- supervisors
 - Prof. Dr.-Ing. Martina Müller (University of Applied Sciences Dresden / HTW)
- Dr.-Ing. Robert Hecht (Leibniz Institute of Ecological Urban and Regional Development Dresden / IOER) 21.08.2022

eibniz Institute o

Leibniz Institute of **Ecological Urban and Regional Development**

Project "MeinGruen – Information and navigation to

urban green spaces"

- Research project (2018-2021)
- Funded by BMVI (mFUND)
- Public urban green spaces
- "meinGrün"-App
- Filter by criteria or acitivity possible
- Pilot cities Dresden and Heidelberg
- Polygon base to store features

Fig. 1: Screenshot "meinGrün"-App [1]

[1] https://meingruen.ioer.info/

- Incomplete data of urban green spaces in official data
- Green spaces are missing (are more than parks)
- Different data sources \rightarrow different data licenses \rightarrow only OSM possible?
- Consideration of the reality of life / perception of the users of green spaces?
- Test of models to predict greenness or publicly accessibility?

Research questions

- How well is OpenStreetMap data suited for deriving publicly accessible green spaces in urban areas?
- Which land use transitions or key-value (object type) mapped in OpenStreetMap have which probability of being a barrier?

Study area

Pilot city Dresden (Germany) + 5 km buffer

Fig. 2: Study area Dresden, Germany [2]

Data sources

- OpenStreetMap
 - Streets, railroads, waterways, barriers, land use, ...
- official cadastral data (ALKIS) \rightarrow having field "TN" / land use
- cadastral parcels owned by the city of Dresden
 - Requested in the city council of the city of Dresden

Definition of an activity-related barrier

- Physical barriers such as walls, fences, hedges (barrier=*)
- Action space of doing an activity \rightarrow delimited by barriers
- Activities divided into "stationary" or "in motion"
- Roads, railroads, waterways \rightarrow are always barriers
- Trails or change of land use \rightarrow uncertain knowledge of being a barrier
 Ergo
- To simplify the model \rightarrow reduction to stationary activities
- Conceptual framework extends OSM definition of barrier

Definition of a activity-related barrier

Fig. 3/4: Examples for barriers (flowerbeds, bollards)

Methodology

Fig. 5: conceptual framework

Technical implementation

- Ubuntu 20.04 LTS
- dev environment based on Docker container
- Each container having specific installed packages
- PostgreSQL/ PostGIS-database
- SQL, PL/pgSQL, Python, Jupyter Notebook
- Open Source approach

Fig. 6: Technical implementation

Derivation of barrier types from OpenStreetMap

- Roads
- Railroads
- Waterways
- Barriers
- Trails
- Change of land use

Certain and uncertain knowledge

Fig. 7: derived barriers (Dresden, Germany)

21.08.2022

osm_railway	osm_trail	osm_street	osm_waterway	osm_barrier
railway='construction' railway='disused' railway='facility' railway='funicular' railway='miniature' railway='narrow_gauge' railway='platform' railway='platform_edge' railway='preserved' railway='preserved' railway='tram' railway='tram' railway='tram_stop' railway='turntable'	highway = 'bridleway' highway = 'cycleway' highway = 'footway' highway = 'no' highway = 'path' highway = 'track'	highway = 'construction' highway = 'living_street' highway = 'motorway' highway = 'motorway_link' highway = 'pedestrian' highway = 'pedestrian' highway = 'pimary' highway = 'primary' highway = 'raceway' highway = 'raceway' highway = 'residential' highway = 'residential' highway = 'residential' highway = 'secondary' highway = 'secondary' highway = 'secondary_link' highway = 'setps' highway = 'tertiary' highway = 'tertiary' highway = 'tertiary' highway = 'trunk' highway = 'trunk' highway = 'trunk_link' highway = 'unclassified'	waterway = 'canal' waterway = 'dam' waterway = 'ditch' waterway = 'drain' waterway = 'fish_pass' waterway = 'river' waterway = 'stream'	barrier=* (all values are relevant)
Remove bridges and tunnels. highway=elevator, only if no closed line (to avoid indoor elevators)	Remove bridges and tunnels. highway=steps, check adjazent highway-key	Remove bridges and tunnels. highway=steps, check adjazent highway-key	Remove bridges and tunnels. also tunnel=culvert	Applied to osm "polygons" and "lines". Also convert "poylgons" to "lines".

13

Fig. 8: derivation of barriers from OpenStreetMap

Regional Development

Fig. 9: Screenshot QGIS showing derived barriers

Leibniz Institute of Ecological Urban and Regional Development

Derivation of land use layer (without overlaps and holes)

legional Development

To extract land use changes as lines; also using a residual class

Fig. 12: Screenshot QGIS showing land use

Ground-Truth in-situ mapping

Only for trails and land use changes

- Goal: generate knowledge about being a barrier by type
- QField-App with prepared forms, Barrier: "yes", "no", "nodata"

Fig. 13/14: mapped barriers (city park area and new town area in Dresden)

17

Ground-Truth in-situ mapping

Mapped objects:

	trails		land use changes		
area	number	∑ length	number	∑ length	
city park	297	64.682,28 m	1.145	41.429,90 m	
new town	96	12.802,35 m	548	19.718,66 m	
miscellaneous	15	4.816,81 m	27	3.057,84 m	
sum	408	82.301,44 m	1.720	64.206,40 m	

Fig. 15: mapped line segments

- Barrier probabilities were calculated for each type of trail or land use change
- Weighted by length

Fig. 16: screenshots QField app

Results of barrier probabilities

barrier probability by land use change Anteil 0.6 0.4 0.2 Prägung . Wohnbau rbefläche . Wohnbau . rünanlage . enverkehr . kestklasse Wohnbau estklasse . rbefläche . Agrar) . Wohnbau canlage erbefläche enverkehr rünanlage garten rägung rbefläche stklasse stklasse stklasse stklasse stklasse anlage istige fläche ägung reich irkehr ilage Agrar) Wohnbau rünanlage Grünanlage estklasse Wohnbau e Prägung Wohnbau chaftsfläche nverkehr Restklasse Prägung kehr Mischnutzung estklasse erbefläche rünanlage Restklasse enverkehr 'ünanlage Grünland oortanlage Agrar) 눕 Park, (Sportplatz, funktior el elnlat7 -unland hholz / Gehölz 5 Geh olz / Gehölz / Gehölz Prägung (ohne elbereich ortanlage Agrar) chholz Golfblatz Indust aftsfläch Besonder Piflac zlohh Ge Grünl Ge ar) olz / Gehölz Þ (ohne j Rasen, Gras (of ölz .aubholz / Nadelholz / Mis .aubholz / Nadelholz / M Spielplatz, Spi Industrie-Stehendes Gras (ohne Agrar) Rasen. endes Gewäss / Misch Industrie-Siedlun Besondere fu Rasen, Besondere Sonstige schholz / Gehölz Nadelh ŭ olz / Gehö Rasen, Gi Laubholz / Nadelholz / Mi Fließgewässer / St Sonstige Siedlungsfrei Sonstige Siedlungsf Laubholz / Nade Park, Grür stige / Nadelho ubholz / Nadelh Iz / Misc Gras (ohne Instige aubholz / Na ol7 / M Sportplatz. Stel olz / Miscl Rasen, ÷ delholz Laubholz / Nadel / zlohholz / Laubholz 21.08.2022 19

D

barrier probability by trail type

Fig. 17/18: barrier prob. for land use change and trail typ

(Unfortunately only with german labels)

Leibniz Institute of Ecological Urban and Regional Development

Generating a polygon mesh

First: creating a dataset of all lines ("line pool")

Barrier type	Additional attributes for each line			
	"origin" type	"buffer" in meter	"likelihood" being a barrier,	
	of barrier	(half width of real world object)	with $0 \le p \le 1$	
streets	osm_street	highway = 'motorway': 5,25	1	
		highway != 'motorway': 3		
railroads	osm_railway	railway != 'tram': 3,75	1	
		railway = 'tram': 2,25		
waterways	osm_waterway	1	1	
barriers	osm_barrier	0	1	
trails	osm_trail	1	0 1 (from ground-truth)	
land use change	lu_change	0	0 1 (from ground-truth)	

Fig. 19: additional attributes for line segments

 Second: polygon mesh (ST_Polygonize()) for different thresholds of "likelihood" → representing different action spaces of activities

Polygon mesh

Selecting different polygons based on different intervals for barrier likelihood

Model to predict publicly accessibility

Input features of each polygon

- Number of benches
- Number of waste baskets
- Number of public toilets
- Number of public internet / wifi

Reference data: cadastral parcels owned by the city of Dresden (17840 polygons)**Assumption:** cadastral parcels owned by the city of Dresden will be publicly accessible

Fig. 22: relation polygons to benches

20 22 STATE OF THE MAP FIRENZE

Logistic Regression

- Target
 - 0: not publicly accessible
 - 1: puclicly accessible
- Counts (in BBox)
 - Total: 27126
 - 0: 26732
 - **1**:430

Fig. 23: result publicly accessibility

bench	waste basket	public toilet	Öffentliches	Score
(in_1)	(in_4)	(in_8)	Internet	
			(in_9)	
	L	ogistic Regressio	n	
X	Х	Х	Х	0,767433
X	Х	Х		0,767433
X	Х		Х	0,767096
Х		Х	Х	0,766424
	Х	Х	Х	0,767321
Support Vector Classsifier (SVC)				
X	Х	Х	Х	0,767545
Х	Х	Х		0,767545
X	Х		Х	0,767321
Х		Х	Х	0,766200
	Х	Х	Х	0,767321
SVC with Radial Basis Function (C=1E6, gamma=1.)				
Х	Х	Х	Х	0,772197
X	Х	Х		0,771804
X	Х		X	0,771637
X		Х	Х	0,770123
	Х	Х	Х	0,769170

STATE OF THE MAP

21.08.2022

Model to predict greenness

Input features of each polygon

- Number of benches
- Number of picnic tables
- Number of trees
- Number of waste baskets

Fig. 25: reference data showing greenness

Reference data: official cadastral data (ALKIS) + land use information (22753 polygons)

Assumotion: land use type "Wald", "Gehölz", "Friedhof", "Sport-, Freizeit- und Erholungsfläche" represents greenness

20 22 STATE OF THE MAP

Logistic Regression

- Target
 - 0: not green
 - 1: green
- Counts (in BBox)
 - Total: 26472
 - 0: 26732
 - **1**:690

Fig. 26: result greenness

Model to predict greenness

bench	picnic table	tree	waste baskets	Score	
(in_1)	(in_2)	(in_3)	(in_4)		
Logistic Regression					
Х	Х	Х	Х	0,922867	
Х	Х	Х		0,922779	
Х	Х		Х	0,922867	
X		Х	Х	0,922867	
	Х	Х	Х	0,922691	
Support Vector Classsifier (SVC) with linear Kernel and C=1					
Х	Х	Х	Х	0,926018	
Х	Х	Х		0,925432	
X	Х		Х	0,926018	
Х		Х	Х	0,926018	
	Х	Х	Х	0,926018	

Fig. 27: intrinsic score

Conclusion and outlook

- A new approach of generating urban green spaces
- First testing show good results

Outlook

- E. g.: XGBoost, grid search for parameters, feature importance
- Generate further input features (path density, other POIs, geometry...)
- Intersect with greenness from remote sensing
- Testing in further cities, mapping more barrier probabilities

Return to OpenStreetMap project

- Completeness analysis of barrier=* ?
- Creating an assistant layer as a help to map land use / land cover ?
- Knowledge about barrier probability and publicly accessibility could be useful to improve routing, e.g. Open Space routing (through polygons)

Leibniz Institute of Ecological Urban and Regional Development

Thank you for your attention!

Theodor Rieche <u>t.rieche@ioer.de</u>

source code & master thesis: https://github.com/traveller195/masterthesis green spaces derived from osm

www.ioer.de